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Kinetic theory of fluidized granular matter
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In this paper, we present a statistical treatment of fluidized, elastic granular matter and a kinetic equation that
describes the evolution of macroscopic properties of such matter. The present kinetic theory recognizes that the
effects of excluded volume become dominant in the dynamic evolution of an assembly of granules and
accordingly takes them into account in the formulation. On the basis of the equilibrium solution of the kinetic
equation, a thermodynamics-like mathematical structure is constructed for the Boltzmann entropy of granular
matter. The meaning of temperature in this mathematical structure is fixed by the shear rate. The equilibrium
solution is shown to yield a density distribution comparable with the experimental data of Clemant
[Europhys. Lettl6, 133(1991)]. The shear viscosity of granular matter is shown to increase with the packing
fraction. This behavior is in qualitative agreement with experimental result by HarsqJ. Fluid Mech.150,
357(1985]. The viscosity also increases with the shear rate since the “temperature” increases with the shear
rate in the case of granular matter. Consequently, the granular matter is shown to be dilatant, as is experimen-
tally known.[S1063-651%97)01504-3

PACS numbg(s): 05.20.Dd, 05.60tw, 46.10+z, 83.70.Fn

I. INTRODUCTION set aside the question of internal states of granules by treat-
ing them as an elastic substance and pay attention to their
Granular matter has unusual properties and beh@ti@t  translational motions only. Nevertheless, we believe that the
that defy easy comprehension from the conventional way ofheory presented in this work still has sufficient validity as a
thinking and theories of continuum matter known to usstarting point for further investigations on granular matter.
through our studies of condensed matter up until now. Thé&he present theory is quite different from the statistical treat-
subject has been studied in engineeriBg6] and has been ment given recently by Bernu, Delyon, and Mazif/h8] on
lately drawing attention in physids—9]. There have been granular matter and those in Ref8—14].
some kinetic theorie§10-14 proposed for such matter  |n Sec. I, we examine granular matter for its features,
along the lines of the classical Chapman-Enskog theory iRjistinct from the ordinary molecular fluids, with a specific
gases[15], but they appear to be only a first step towardaim of guiding us in developing a kinetic theory of fluidized,
theories of a deeper, perhaps more appropriate, nature. INdyasiic granular matter. Based on what we have found on

recentl experimentlal article dand _Cﬁm%“teé Si”&“""‘til‘l’”s Oyranular matter in Sec. Il, a kinetic theory is then developed
granular matter, Clement and Rajchenb@t8] and Gallas, o the flyidized granular matter in Sec. Ill. The balance

Herrmann, and SokolowsKiL7], respectively, report that a equations can be derived for mass, momentum, and energy—

density distribution of granules subjected to an acoustic per; : S U
turbation at the bottom of its pile exhibits a Fermi-like dis- the conservation laws—from the kinetic equation if the mass,

tribution. Although this feature appears to be what is intu_momentum, and internal energy densities are statistically de-

itively expected and intriguing, it requires some thought Withfined appropriately. Such definitions are given in Sec. IV, but

regard to the underlying dynamical and kinetic theoreticthe explicit forms for the balance equations are referred to in

principles. It is the aim of the present paper to present the Iiter_ature, sinc_:e they are in the same f_orms as those for
viewpoint on the kinetic theory of granular matter which is the ordinary continuum matter. However, in applying them
sufficiently fluidized to treat it as if it is a fluid. To make the in flow problems the existence of a basic, finite length scale
treatment as simple as possible without sacrificing the esse®f the granules must be carefully taken into account. fihe
tial aspects of granular matter, we assume that the granulégeorem is also briefly discussed together with the equilib-
are elastic, since the assumption can still describe dissipatiditim solution of the kinetic equation in the same section. The
in the system. The inelasticity of collisions between granulegquilibrium solution is used to construct a thermodynamic
is important, but not of primary importance in a statisticalanalogy in Sec. V, since thermodynamics of granular matter
description of granular matter, since a similar effect can bas unavailable at present. In Sec. VI, the parameters appear-
achieved by means of momentum correlations, as will béng in the equilibrium solution are corresponded to observ-
shown later. A truly particulate, statistical treatment of theables such as shear rate and so on. We thereby construct an
subject should take into account the internal states of graranalogy of thermodynamics by means of the equilibrium so-
ules and their evolution at the kinetic theory level, but such dution of the kinetic equation. The calculated density distri-
treatment would be rather involved in formalism. Here, webution is compared with experiment in Sec. VII. The viscos-
ity of granular matter is calculated in Sec. VIII. It shows the
dilatancy of the granular matter and a qualitatively correct
*Also at the Centre for the Physics of Materials, Department ofdensity dependence reminiscent of experiment. The conclud-
Physics, McGill University, Montreal, Quebec, Canada H3A 2K6. ing remarks are given in Sec. IX.
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Il. GRANULAR MATTER IN CONTRAST dynamical level when the granular assembly is in motion.

TO ORDINARY MOLECULAR FLUIDS We believe that the excluded-volume effect and, especially,

. . - . the momentum correlations arising therefrom should be bet-
To acquire a clear picture of how distinct the behavior ofye 4ccounted for than has been so far in the kinetic-theory

granular matter is from the ordinary molecular fluids, Weeatments mentioned. For definiteness of our discussion we

compare characteristics of the two kinds of matter in quesggnsider an assembly & spherical, elastic granular par-

tion. First of all, for a given volume there is a difference of tjcles of diameters and massm in this work. The total

many orders of magnitude in number between the ordinaryolume ofN such granules then is

molecular fluids and granular matter, since there are about

10" molecules in 1 crhof a molecular fluid whereas there Vo=Nuvg, (1)

can be, for example, only fGof course, depending on the

size of the graihin the case of granular matter. This implies

that considerable caution must be exercised when a statistical

theory is applied to granular matter, since the characteristi- Vo=

cally small number density of granules can give rise to siz-

able fluctuations in the mean values calculated. Closely reNote thatV,, however, is not the actual volume of the sys-
lated to this feature is the fact that granular particles arg@em. If the actual volume of the assembly in a configuration
macroscopic in size and mass. This also gives rise to thg denoted byV, then the number density at the given
question under what condition can granular matter be treatecbnfiguration of the granular assembly is given by

as a continuum and calls into question the validity of con-

tinuum equations such as the mass, momentum, and energy n=N/V. ©)
balance_ equations. In general, since grains are massive, ttfphe packing fraction of the assembly may be defined by
gravitational force cannot be left out in general when granu-
lar matter is considered for its dynamic properties, whereas é=1inmwad. (4)

the gravitational force plays an insignificant role in the case

of molecular fluids except, perhaps, for interfacial phenom-Unlike molecular fluids, the number density of granular mat-
ena. Unlike molecular fluids, attractive forces betweenter sensitively depends on its configuration, since it can as-
granular particles are negligible and play an insignificant rolesume an unusual metastable folmg., arches and voijls

in granular dynamics. Dynamics in granular matter is domi-with a volume larger than a close-packed volume, which is
nated by the hard, repulsive forces and the excluded-volumghe minimum volume the system can assume. The close-
effects come into play significantly in the case of granularpacked volume of the granular matter will be denoted/by
matter, whereas in the case of molecular fluids it becomeghich yields the volume per particke.=V /N that may be
important only when the density of the latter is close to thewritten as

close-packed fluid value. In the case of molecular fluids,

thermodynamics provides a well-defined continuum descrip- ve=3mR. ()

tion of their behavior and such a continuum description can ] ) ) ) )

be furnished by a molecular theory with the help of statisticalHere R¢, defined by Eq/(5), is the diameter of imaginary
mechanics and, in particular, kinetic theory. In fact, in theSPheres making up the volumé&;. The ratioR/o is larger
case of molecular fluids, these two lines of theory are mututhan unity. The volume of configuration spacefogranular
ally complementary in the sense that, whereas the thermodyparticles in the close-packed configuration is therefore esti-
namic theory is given molecular foundations by the statisti-nated to be

cal theory of the system, the latter is elevated to a physical L s

theory from a purely mathematical probability theory with Icon= (s mR) ™ (6)

the help of thermodynamics. If we wish to develop a statis- _ _

tical theory of granular matter, it is therefore important to 1N€ diametero of the granule oR. sets the basic length
have a phenomenological thermodynamic theory of the Syss_cale in the dgscnptmn_ of the granular assembly of interest
tem firmly founded on the principles of thermodynamics andN€re- Al the distances in the theory of granular matter con-
if such a phenomenological theory is absent, on an analog dered _here can be reckoned in this sca_le. The difference in
that is well thought through at least from the viewpoint of (€ configuration space volum&g andV, is

thermodynamic principles. Since it is not clear at present L 3 3N

what the thermodynamics of processes in granular matter Al o= m(RE—0°)]", (7)
should be like, this question should be resolved before we | . . .
attempt to formulate statistical and kinetic theories for granu—WhICh ranges in the interval
lar matter. We will return to this question later.

The consideration made earlier on granular matter sug-
gests that the notion of finite size and excluded volume as;, .\ . so _n . Therefore. the minimum volume uncer-
sociated with granules play a crucial role. This of course ist int fcth ¢ I'd d vol ’  th ; ih )
well recognized in the phenomenological studjés-6,8, ainty of the exciugded volume of the system, 11a& granu
statistical treatment§10-12,15,18 and computer simula- lar matter, is given by
tions [9,17], but the subtle aspects of excluded volume do
not seem to have been fully and clearly elucidated at the

whereuv, is the volume of the granule
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Left unperturbed, granular matter in a stable or metastabléhe perturbation applied to the granular system. This the
configuration(state does not flow and the velocities of the minimum phase volume associated with the granular assem-
particles are equal to zero. Only an external force such akly, which under the gravitational field is perturbed by an
shearing or other means of forcing produces a motion of thexternal force of frequency and amplitudeA in a close-
assembly in part or as a whole. If the frequency of the perpacked configuration. This phase volume must be properly
turbation isw and the characteristic distance associated withaken into account in the development of a kinetic theory of
it is amplitudeA, then the momentum of a granule of mass fluidized granular matter, since it must serve as distance and

associated with the motion is momentum scales for the phase volume of the system in the
statistical description of the granular matter of interest. The
Pa=€eMAw, (10 A. is essentially the phase volume which accommodates a

granular particle of the mean momentupp . This basic

phase volume per granule, is not negligible compared with

the actual phase volume in the case of granular particles.

This point is crucial in determining the behavior of an as-
mgA=3imc, sembly of granular particles.

Let us denote the phase volume element of the granular
whereg is the gravitational acceleration. That is, the charac-assembly around the phase point, or simply the phase,
teristic distance in this instance is given by r™ pM) by dI'=dr™Mdp™, wherer®™ and p™ collec-
tively denote the center-of-mass position and momentum
vectors of granular particles in a fixed coordinate system.
Then, the statistical description of such a system can be valid
only if this phase volume of the system is much larger than
Bagnold[2] found that the mean velocity, or more precisely the basic phase volumE, presented earlier. This will be
the speed of a granular assembly subjected to shearing fenerally the case if the granular matter is sufficiently fluid-
proportional to shear rate. Therefore, since the character- jzed. Thus, we will assume that the phase volume of the
istic frequencyw is proportional toy in the case of shearing, system contains a large number of the basic phase voliyme
we may take mentioned, and the former is reckoned in the scale of the
latter,T".. The number of basic phase volumes in unit phase
volume is then equal to If. And such a number is an
Herea is a constant parameter with the dimension of dis_element that must be carefully taken into consideration when

tance which may be set= y2¢A. By combining Eqs(10)— the collision term in the kinetic equation is calculated on the
(12), we obtain basis of granular collision dynamics.

where € is a dimensionless proportionality constant. If we
denote the velocity of the particle lyand the motion is in
the direction of the gravitational field, then at equilibrium

CZ

Azg.

(11)

c=a'y=aw. (12

PaA=OgMmAw, (13
Il. KINETIC EQUATION FOR FLUIDIZED
where GRANULAR MATTER
Aw? We have now come to realize that a granular assembly
Og=——m. (14 should behave qualitatively differently from the behavior of
9 an isolated pair of granular particles, which should strictly

This parameteB, characterizes the motion of granular par- obey the laws of motion within the framework of Newtonian

ticles subjected to the gravitational field and an external per[necham(_:s.glt IS belcsuge Olf the ver:y ;act that the particles
turbation that displaces the particles from their positions inrj"a"e a sizable excluded volume, which causes strong corre-

static configuration. Therefore, the volume of the momentu ations of momenta, that there are severe limitations on the
space ofN granula'r particles’going through such a meancollective motion of the particles in a congested assembly of
motion is given by granular particles. In the case of granular matter, because of

the relatively large volume fraction of the excluded volume

AN=(egmAw)3N (15)  the aforementioned limitations become a dominant factor for
P collective motions of granular particles. We believe that the
and the corresponding phase volume is then given by momentum correlations take precedence over the inelasticity

of collisions in the hierarchy of dominant effects in granular
I=AY=(A A )Nz[%wgieg(mp\wﬁ]”, (16)  matter. We now take this feature into account in formulating
¢ a kinetic theory of such matter. A cogent picture for the kind

where of difference in the behaviors of an isolated pair of granules
and an assembly of them can be seen in the example used by
oa=03%0, Jaeger, Nagel, and Behringer in their recent artide].
These authors compare, say, the motions of a bead with a
SR, R: sack of many beads that falls on a glass plate. A single bead
Q= o ?_1- (17 falling on the glass plate repeatedly bounces off the plate

before it comes to rest, whereas the sack falls dead on the
Therefore, it is possible to interpref, as the effective diam- plate and remains there. The basic difference is attributed to
eter of the granule swelled by the facfof’® associated with many inelastic collisions that the beads in the sack go
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through, but it is basically the excluded-volume effect of On equating Eqs(20) and (21), there follows the evolution
beads in the sack that frustrates the bouncings of the firgquation forf (v,r;t):
beads hitting the plate which are predicted to occur by the
Newtonian laws of motion. In the case of the beads in the
sack—a congested assembly of beads—the individual mo-
tions of beads are highly correlated and constrained, unlike
isolated beads. In this connection, it must be pointed out thafVe now calculate the collisional contribution. It is useful for
the friction forces on contact are indispensable in thethis purpose to recognize that the collision integral in the
molecular-dynamics simulations of granules by Gallas, Herkinetic (e.g., Boltzmanhequation consists of two basic com-
rmann, and SokolowskKi17], and that they are a kind of ponents. One is the collision dynamical part, which accounts
momentum correlation that springs into action when the parfor the collision event that is imagined to occur between
ticles come into contact. We thus see that a congested assei#olated particlese.g., a pair of particlgs This collision
bly of granules puts certain statistical constraints on the dyevent is governed by Newtonian laws of motion for a few
namical evolution that isolated individual particles would particles and, in the present theory, two particles. The other
have followed according to the Newtonian mechanical lawsjs the statistical part that gives the statistical weight for the
and that the normal Newtonian mechanical evolution ha®ccurrence of particles having the values of the dynamical
been thereby frustrated. That is, the statistical evolution o¥ariables predicted by the Newtonian laws. It is important to
such an assembly, therefore, cannot be inferred to be clasdieep a clear distinction between these two factors in making
cal in the sense of the Boltzmann kinetic theory. This is aup the collision integral in the kinetic equation. The statisti-
crucial point we would like to stress in this work. cal weighting factor is not altering the collision dynamics
We are interested in the probability of finding a granularitself governed by the Newtonian mechanical laws, but the
particle with momentunp at positionr in phase volume statistical probability of the mechanically predicted collision
elementdr dp at timet and the spatiotemporal evolution of event deviates from the classical, Boltzmann kinetic-theory
the probability distribution function. That is, the object of form, which is usually taken in the kinetic-theory treatments
interest is the single distribution functiditv,r;t) of velocity ~ [20].
v=p/m at timet. If this distribution function is integrated  First, let us define by vectdt the unit vector along the
over the entire phase volume, it is normalized to the totaRpse line of the two hard spheres in contact that is parallel to
number of particleN: the vector connecting the centers of mass of the two par-
ticles. The relative velocity vector of the particles is denoted
— by g,,=v;,—V,, wherev; andv, are the velocities of the two
f dr dv f(v,r;t)=N. (18)  particles 1 and 2 in collision. Then the volume swept by the
two particles in collision in timedt is

%+V-V+F-vv>ﬁv,r;t)=R'[f—1. (22)

Therefore, when integrated over the momentum space, it 02(gyp- K)dt.
gives
We will henceforth drop the subscript 1 from the quantities
for particle 1. The initial velocities of the colliding pair of
particles are denoted byandv,, wherev=v,. We also take
into account the aforementioned coarse graining of distribu-
wheren=N/V is the number density. If we count the num- tion functions so that the distribution functions are assumed
ber of particles flowing in and out of the elementary phase© be uniform in the collision volume. The population of the
volumedr dv atr andv in time intervaldt, it is given by ~ colliding pair of particles is f(v,r;t)f(v,,r;t)x(r,r —ko),
where x(r,r —ko) is the spatial correlation function for the
9 _ pair of granular particles in collision. In the case of a granu-
(ﬁ +v-V+F- VU) f(v,r;t)dr dv dt. (20 lar assembly that has a large excluded volume relative to the
actual volume of the system and thus a relatively large,

. _ o elementary-phase volume occupied by a particle, the popu-
HereF is the external force per mass aNg=d/ov. This i |ati0n of the particles in the final state of collisighat is
the change in number density due to the kinematic flow otstatistically realizablds

particles in the elementary phase volume mentioned. It is
important to note that the distribution function is taken to be c* E[l—ACF(v,r;t)][l—ACF(vz,r;t)]. (23
uniform in this elementary phase volume, and this phase vol- 9
ume must be clearly larger than.. This means that the we elaborate on the presence of @ factor in the colli-
distribution function is coarse grained in a scale comparablgjonal rate of change. In the case of the collision of an iso-
to or larger than that of.. . The kinematic change in number |ated pair of granular particles, the collision process is deter-
density must be balanced by the change in number densifyinistically described by the Newtonian laws of motion and
due to collisions of particles within the phase volume. If wethe particles end up in the final state as predicted by the
denote the collisional rate of change in number density by|assical mechanical laws. However, in a congested assem-
R’[f], then the number density changedndv in time du-  ply of granular particles that are constantly in collision, some
rationdt is collisional events are not statistically realizable, although
_ they are dynamically dictated by the Newtonian laws of mo-
R’[f]dr dv dt. (21)  tion, if the basic phase volumes into which the particles are

f dvf_(v,r;t)zn, (19
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destined to go are already occupied by other particles in thbut in this work we will use the equilibrium-pair correlation
assembly. At this point, it is useful to recall the comparisonfunction determinedad hocfrom elsewhere, e.g., the equi-
of a bead and a sack of beads made by Jaeger, Nagel, alidrium theory.

Behringer [19], which was mentioned earlier. Since  Taking the aforementioned factors into account, we obtain
A f*(v,r;t) gives, on the average, the fraction of particles tothe forward collisional rate of change in the number of par-
be found inA;, which are already at the state predicted forticles in the volume elementk dv dr dv, and the collision
the collision of an isolated pair by the Newtonian laws andvolume

thus precludes other particles coming ik, the factor _

[1—Af*(v,r;t)] gives the fraction of particles that are statis- (R'[Acf]dr dv dt)somarg

tically allowed in the said state on completion of the said
event of collision between the pair of particles 1 and 2. Since
the other particle must be found atko if_one is atr, the
other factor for particle 2 is similarlyl—Af* (v,,r —kot)], — —
but this factor is taken in the forfil—Af*(v,,r;t)] for the X[1=Af*(v,rit) [[1-Acf* (v, rit) Jdv dr dt,  (24)
gg:s(')‘c\’;fpfgewég}l;[Shi(e):c\)grlﬁ?ngera.mggfg;tgf g;sgzlrjggngggcéwhere the _asterigk denotes the postcollision value. Note that
physical meaning similar to the factdil—A.f*(v,r;t)]. x(r.r—ko)=x(o) in Eq. (24). "

Therefore, the factolC* represents, on the average, the It is po_s_5|blt_a to calculate_ the collisional rate for the_ re-

) : 9 o . verse collision in a manner similar to E@4), and we obtain
physical reality that not all collisional events in a congested
assembly of granular particles can be realized, at the statisp/r A 7,
tical level of description, in states as predicted by the New—%R [Act]dr dv dDreverse
tonian laws of motion for an isolated pair of particles and _ _
that there is an additional statistical constraint manifesting= 02m3f dvzf dk(ggp K)x(r,r+ko)f* (v,r;t)f*(v,,r;t)
itself because of the interactions of mutual exclusion among
the particles. This exclusion effect even appears in the mo- x[l_Acf_(v,r;t)][l_Acf_(vz,r;t)]dv dr dt, (25)
mentum space in the form of a momentum correlation func-
tion, which Cg in effect represents, since the statistical evo-for which we have used the Liouville theorem for the phase
lution of the system is considered in the phase space. Thigolume. Recall(r, r +ko)=x(o) in Eq.(25). The restitutive
factorC} , a momentum correlation function, is absent in thecoefficient, which appears in the existing kinetic theories
ordinary classical fluids sinc&; is O(#%) for ordinary fluids  [10-14 for granular matter, is set equal to unity in these
and hence, for examplé\.f*(v,r;t)~nA.=0(n%3), which  collision terms, since the granules are assumed to be elastic.
is small at normal states. The factﬁG may also be com- We reiterate that despite the fact that the collisions are elas-
pared to the friction force on contact that is indispensablfiC, the assembly is still dissipative because of random colli-
used in molecular-dynamics simulatiofi$7] of granular ~ Sions between the particles. The net coarse-grained colli-
matter. As will be seen later, the end effects of the momensional rate of change in number is given by combiniag)
tum correlation factors such & and the friction forces and(25:
used in molecular-dynamics simulations are the same in that o
they tend to keep the particles in the gravitational field piled R'[Acf]202m3x(g)f def dk(gyo k)
up. We remark that this momentum-correlation effect is not

=02m3J dVZJ dk(gyp- K) x(r,r —ka) (v, F;t) F(Var3t)

taken into account in the existing kinetic theories of granular R (vy petet) fR Fiv

fluids cited earlier. ’ ° xif (v,r,_t,t)f (VZ’T]' Ai(v,r,t)]
In the configuration space conjugate to the momentum X[1=Acf(vy,rt)]—f(v,r;t) f(vy,r;t)

space, the exclusion effect is relatively easy to comprehend if _ _

a spatial correlation function is made use of, and for this X[L=Af*(v,r;0)][1—Af*(vy,1;t) ]}

purpose we inserk(r,r —ko) in the collisional rate. This is (26)
the probability of finding a pair of particles separated by

ko—namely, a pair correlation function—at the instant of This collision term will be used in this work. We remark that
collision and the excluded-volume effect is already built intog fine-grained form of the collision integral does not give rise
it. Since the spatial correlation function must be a function ofto a satisfactory kinetic equation and macroscopic continuum
the relative distance between the particles, we find equations.

With the definition of a new distribution function

x(r,r=ko)=x(o), f:Acr (27

which is the pair correlation function evaluated at the contacthe kinetic equation fof (r, v, t) may be written in the form
point of the hard granular particles regardless of the mo-

menta of the particles involved. Thigo) is also in confor- (
mation with the coarse graining of distribution functions

over the collision volume. This distribution function can be, _
in principle, determined within the framework of kinetic where R[f]zAglR’[Acf]. The kinetic equation(28) with
theory if its own kinetic equation is formulated and solved,the collision integral defined by E@26) is the basis of the

d
—+Vv-V+F.V,

P f(v,r;t)=R[f], (28
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kinetic theory of fluidized, elastic granular matter presentedequations indicate that the conventional continuum mechani-
below. To be more precise, this kinetic equation must becal equations hold for fluidized granular matter, if the kinetic
accompanied by a kinetic equation for configuration correlaequation(28) is assumed. They are in the same fof28] as

tion function y(o) appearing in the collision integral, but the those for ordinary molecular fluids. It implies that granular
theory becomes much more complex if such a kinetic equamatter, when sufficiently fluidized, acts as if it is a con-
tion is added. Since we are interested in the essential featuteauum matter obeying the conventional mass, momentum,
that captures the kinetic evolution of nonequilibrium pro-and energy conservation laws.

cesses in fluidized, granular matter, we will confine the dis-

cussion to the level of precision by which we not only ne- . H theorem and equilibrium solution of the kinetic equation
glect inelastic collisions and set the restitutive coefficient
equal to unity, but also take the equilibrium pair correlation
function for y(o). For a more complete theory, we defer to
future studies that more properly tregto) and take into
account the internal degrees of freedom for the granule
(e.g., inelasticity of granulgs

The stability of the equilibrium solution of the kinetic
equation(28) can be examined in terms of a Lyapunov func-
tion, which in the case of kinetic equations appears as the
goltzmannH function, that is, the Boltzmann entrofy It is

efined by the statistical formula

S=pS=—kg(f(r,v;t)In f+[1—f(r,v;t)]In(1—f)).

IV. CONSERVATION LAWS, THE H THEOREM, (35)
AND EQUILIBRIUM SOLUTION
OF THE KINETIC EQUATION The derivative of this Boltzmann entropy satisfies the in-
A. Conservation laws equality
Mean values for macroscopic observables are statistically dS>

calculated by the formula a/o* (36)
A_(r t):A—lm3f dv AF V) F(v, 0= (AR F(V, ). where the equality holds only at equilibrium. This inequality
’ ¢ ' n ’ v can be proved by the well-known procedure of the Boltz-

(29) mann kinetic theory. We remark that the statistical form for

. . - . . .. Sin (35 is strictly dictated by the collision terit26) of the
With this definition for macroscopic variables, the kinetic kinetic equation(28). It is not arbitrarily chosen at all. If the

equation(28) yields the balance equations for mass, momen;, ; :
tum, and energy as well as other evolutiGconstitutive LoarrrnejortﬁésinneOtutaalﬁ%]Gfxfacrglr{o?z;(Gr?)’vg:je Hiv?r??r:(;rz&-
equations. They can be readily derived by using the well+ Y q ! P 9

ST . . lision term (26) for the kinetic equation.
known procedure in kinetic theory. Since the procedure is If the kinetic equation is used to calculate the local form

well documented20] and no particular consideration is re- of the inequality(36), the Boltzmann entropy balance equa-
quired for the present problem, we will simply give the sta-tion fO||OV\?S' YS9, Py q

tistical definitions for the quantities involved and will refer to
the explicit forms for the balance equations in 0. dS=—V.J
) . i =—V.J4r,t)+ r,t), 3
The mass density, momentum densityu, and internal pdS (LU FoenlT,1) 37
energy densityc are defined, respectively, by the statistical | here the statistical formulas for the Boltzmann entropy flux

formulas Js and the Boltzmann entropy productian, are respec-
p=(m¥), (30) tively given by
Jo=—kg(C{f(r,v;t)Inf+[1—f(r,v;t)]In(1—f ,
E=pE=(3mC*f), (32 Ten=ke(In(f 1= 1)R[f])=0. (39)

whereC=v—u denotes the peculiar velocity. These defini- The positivity of o, is a local representation of th¢ theo-
tions and the kinetic equation give rise to the balance equgem ando,,, vanishes at equilibrium.

tions for the conserved variables, if the stress tersand Thus, the equilibrium solutiof, of the kinetic equation is
the heat fluxQ are defined, respectively, by the statistical given by
formulas

In(f;'—1)R[f.])=0. 40

On applying the procedur0] of the kinetic theory of or-
Q=(3mC?3Cf). (34 dinary fluids, the solution of this equation can be easily ob-
tained in a well-known form. That is, if the Hamiltonian of a
The stress tensd? and the heat fluQ, in turn, obey their  particle subjected to the gravitational field is denoted by
own evolution equations which can be derived from the sta-

tistical formulas with the help of the kinetic equation. Such H=3imC?>+mgz (47
evolution equations are in fact the constitutive equations for
the stress and the heat flux. The derivations of the balandden the equilibrium solution is given by
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fo=[expB(H— o) +1] %, (42) netic equation a mathematical structure of thermodynamics
for fluidized granular matter, that resembles that of thermo-
whereg is a constant and the parameteris closely related dynamics of molecular fluids.
to the normalization factor df,. These parameters generally ~ An example of such a thermodynamic analogy in physics
depend omr. The gravitational field is taken parallel to tke and in the description of natural phenomena is the case of
axis. The equilibrium solution has exactly the same form asadiation[24]. It is helpful to recall that the thermodynamics
the distribution function for Fermi-Dirac particles. The rea- of radiation was constructed on the basis of an analogy to the
son for this is the excluded volume effect that manifests itthermodynamics of matter under the assumption that there
self even in the momentum space by statistically putting conexists an equilibrium Gibbs relation for the radiation entropy
straints on the population of particles undergoing collisionaland with the help of the black body in equilibrium with
transitions and thus resulting in strong momentum correlaradiation and the Stefan-Boltzmann 1d@5] E,,;=ag T
tions for the collision pairs in the congested granular particlavhereT is the temperature of the black body. We use this
assembly. The distribution functioi is normalized to den- procedurg24] as a guide for constructing a thermodynam-
sity: icslike phenomenological theory of fluidized granular matter
under consideration and acquire the meaning of temperature
n=([expB(H—pe) +1]171). (43 from the experimental observation of the energy-shear rate
relation[2].
Anticipating the result presented later, we may set in the
nonical form(42)

In the case of granular matter, the meaning of paramgtsr
more subtle than the case of Fermi-Dirac particles, since it i%a
not clear whether there is a thermodynamic structure admis-
sible from the viewpoint of the thermodynamic laws. In fact, B=1kgT. (44)
the meaning of temperature must be altered in the case of

granular matter. The reason for this statement is discussed {fere T is the translational temperature of granular matter

the following. that is mechanically fluidized, but not the internal tempera-
ture of the granules at rest. We remark that this “tempera-
V. THERMODYNAMIC ANALOGY ture” is not the conventional temperature we talked about in

FOR GRANULAR MATTER the case of ordinary molecular fluids.

Bagnold[ 2] observed on the basis of experimental studies
%hat the mean velocity of granular matter is proportional to

C le being th AS i Il Kk X the shear rate and, consequently, the mean internal energy is
arnot cycle being the prototype. As is well kKnown, it Was g |51eq to the shear rate squared. In fact, we have already

the Carnot cycle and its analy§i82,23 that gave rise to the a\qijad ourselves of this result in Sec. II, where the notion of
mathematical structure of thermodynamics. The thermodybasiC phase volume is introduced. Thus, we may write the

hamics of fIU|d|ze(_1I gra_nula_r matter, ho_wever, Presents afhierpq) energy of fluidized granular matter in the form
unfamiliar and vexing situation, since it is not obvious how

to construct a cycle with it as a working substance. In the E=E,[1+cg(y)y2], (45)
case of granular matter, the notions of heat and temperature
are not as well clarified or established as for molecular fluidswherec is a constant with the dimension of time squared,

and it is not clear if one can simply apply to granular matterg(,) is a dimensionless function of shear ratevhich tends

the thermodynamic theory valid for molecular fluids. To seeto unity asy vanishes, ané, is the energy of the system in
this point more clearly, let us examine whether or not it iSa Stationary Conﬁguration ay=0 (e_g_, a Stationary meta-
possible to construct a cycle similar to the Carnot cycle orstable configuration Within the range of shear rate studied,
the conventional notions of heat and temperature, which argagnold foundy(y) is independent of the shear rate and thus
used for the Carnot CyC'e with a molecular fluid as the WOfk-Can be set equa| to unity' Fo||owing Bagno|d, we will take
ing substance. In the case of the latter fluid, the temperaturg(,)=1 in this work. However, this assumption concerning
of the fluid rises and the volume expands on absorption 06(7) is not mandatory in the Subsequent ana|y5i5 and may be
heat by the system, whereas injecting the same amount @fasily removed without altering the thermodynamic analogy
heat into granular matter as supplied to the mass of a m@yresented for granular matter. We now state the following
lecular fluid will not result in a noticeable change in it exceptassumption about the existence of the Clausius entropy of

for, perhaps, a slight expansion of the volume due to thgluidized granular matter that obeys the equilibrium Gibbs
thermal expansion of the granules, but the change is not dug|ation

to random translational motions of the granules themselves,

which are induced by the supplied heat and the raised tem- dS=T HdE+pdV). (46)
perature. Therefore, we see that the granular matter is trans-

lationally cold and random translational motions of the gran-Here p is the pressure and is the conjugate volume. We
ules do not get excited by heat. This indicates that it is noemphasize that this relation will be established for granular
possible to construct a thermodynamic theory of granulamatter not on the basis of the thermodynamic second law,
matter on the basis of the conventional notions of heat andhich was originally stated only for cycles with a molecular
temperature, even if the matter is fluidized by a mechanicafluid as the working substance, but by means of statistical
external force, in the same manner as for molecular fluidsmechanics under the thermodynamic-statistical mechanical
However, we might be able to resort to a thermodynamiccorrespondence used in the ensemble theory; this time the
analogy to acquire from the equilibrium solution of the ki- procedure is only reversed from that for ordinary molecular

In the case of molecular fluids, the thermodynamic theor
of processef21] is well founded on the notion of cycles, the
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fluids. We elaborate on this in the following. We remark thatThese integrals can be treated by means of well-known pro-
we are not considering a system at rest, which was consicdtedured28]. We summarize the results below.
ered by Edwards and Oakeshpii for the thermodynamic
formalism for a granular assembly. A. The case ofa positive and very large
It is now asserted that as in the Gibbs ensemble method

[26] for ordinary molecular fluids, there is the following cor- The normalization integral for this case is given by the

respondencf27] between thermodynamig, in Eq. (46) and formula
the equilibrium Boltzmann entropy computed from E85) 4 [2m)\ 32 2 7t
with the equilibrium canonical forn2) n(z)= 3, (?> a3lz[1+ W+ Wﬁh" . (52
Selse= Seln: (47 By using this result, we find to the lowest order
where the subscripts st and th mean the statistically com- o 3A.n(2)\ 22 B
puted and the thermodynamic entropy, respectively, and, a= ,ue—bz:(Z—) m: (53
similarly, there hold the correspondences Eoand p ™ m
The mean internal energy is given by the formula
Els=Eln, pls=Pln- (48) v 1s Gven by
. . 47 (2m\32 572  7a*
We use Eqs(45)—(49) to fix the meaning of parametgrand E=zx |5/ A a2 14+ —— ETY R
thus the meaning of therewith. First, the meaning ¢ in SAc\ B 8a” 38
the distribution function is fixed by comparing E¢5) with 47 [2m) 372
the statistically computed mean energy. Then the correspon- = ¢ (7) B a1+ a"%K(a)]. (54)
C

dence(48) is used to endow in Eq. (46) with the “thermo-
dynamic” meaning. It must be noted that this process is jush, truncation of the series, E(i4) may be approximated by
the reverse of the one used for ordinary molecular fluids

where the meaning @8 is fixed in terms ofT that is founded A7 [2m) 32

on the thermodynamic second law which provides the ther- E= BA (7) “1a%?
modynamic temperature scale. This reversal of the procedure ¢
is forced upon us because E46) is not given by the second The front factor in Eq(54) is independent o if Eq. (53) is
law on the basis of analysis of a reversible cycle conventionysed. With the definitions

ally made in thermodynamics of molecular fluids. This time,

572
1+ 8a2)" (55)

it is the statistical theory, constructed by an analogy to the 3n(2)%? [3A.\%3

molecular statistical theory which is known to yield a struc- """ 1om |\ 4n (56)

ture of thermodynamics, and the correspondences, (Eds.

and(48), that is enabling us to construct a thermodynamics-and

like mathematical structure for fluidized, granular matter, o3

which is analogous to the thermodynamics of molecular flu- . [3A:n(2)

iy g y 0=1/275( kgm) 1(—277 , (57)
VI. DETERMINATION OF PARAMETERS B AND He we obtain the internal energy in the form
It is necessary, for the stated aim, to calculate the normal- _ T\?

ization condition forf, and the mean internal energy for the E=Eq(2)|1+ 9] I’ (58)

granular matter subjected to the gravitational force when the

granules have acquired kinetic energies by an external forcéor which Eq.(44) is used. By using Eq45) and the corre-
Since the integrals involved do not permit exact evaluationsspondence48), we now identifyT:

they will be calculated to an approximation, first, in the limit

where the parametg is large andu,— mgz>0. In this limit T=coy. (59
the meaning of3 is elucidated. With the meaning @ thus o o ) )

established, we then consider the case wigie moderate This identification ofT with y (more precisely, the absolute

in value. It is necessary to evaluate the following integrals; value of the shear ratean be made more precise if a more
precise phenomenological expression Eorexists than Eq.

o (2m>3’2 w 112 9 (45) and if Eq.(54) is used without truncation. However, it
n2)=-—1|—4% f dt ————, 49)  would not change the basic conclusion tias directly pro-
Ac | B o ext-a)tl portional toy. Therefore, we will be content with the result,
3 a2 Eqg. (59), obtained here. We remark that the constarin
_ 2_77 (Z_m) g1 xdt t (50) (59) cannot be calculated by means of statistical mechanics,
Ac\ B o expt—a)+l’ but is a parameter like the Boltzmann constant that must be
chosen to correlate the mechanics of granular matter with its
where withb=8mg thermodynamics.

Since f, on substitution into the statistical formula for
a=B(ne—Myg2=pu.—bz (51) the Boltzmann entropy, yields the differential form 8y
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dS.=kgB(dE+pdV) (60) 1[d¢ & &) d?
P R T
if p is defined statistically by the formula = A=0) 4
(71)
p=2mkgTA %2 fo dt tYan(1+e* 7). (61)  with ¢(\) defined by
On making use of the corresponderd@), we find ¢—1:i i (=D
d\ &1 |52 '
T|th<:>(kB,8)7l|stv (62 .
The leading examples fay, are
which by virtue of Eq.(44) implies that the thermodynamic
temperature must be identified withas in Eq.(59), namely, c.=2"32 ¢ _§ 1_ 2 (72)
S 2le )
T|pw=coy. (63

etc. If a;(1+e %) ~'<1, Eq.(66) may be approximated by
In this manner the statistical theory gives rise to an interpre-
tation of thermodynamic temperature and thus to a thermo- n(z)= No (73)
dynamic analogy, as characterized by Ef) for the granu- l+e '
lar matter under consideration. We note the relation

By applying for the same procedure as for EG9), we

=2E(2). (64)  obtain the internal energy in the form
This relationship can be used to compute the density depen- _3 n k
dence ofp. If Eq. (54) is used in this expression fqr, the E=in(z)p7%| 1 ;1 k+1 Cé (74)

equation of state is given by
which implies that the equation of state is given by the for-

87 [2m)°%? mula
— . -1 _5/ -2
BT ( 5| Blelta K (a)
2 p=n(2)8~ 1+ 2 57 ckfk) (79)
~2Ey(2) 1+(§ (65) k=1
These results suggest that the granular matter is not ideal and
This is the equation of state in the limit af—oo. the virial coefficients are given by
i k
B. Th e derat I
. . e .case Ol moaderate II’]. value Bk_ 1 CkAsk, (76)
The density is given by the expansion
° where
ND=NeS (66)
S (T+e )L g\
A=AY —| . 77
2mm
where
. These coefficient8, stem from the momentum correlations
no= 2 (Zwm) 67) induced by the excluded volume inherent in the granular
0 7mieg'(mAw)3 B ' particles in a congested fluidized assembly. Perhaps here we
may make arad hoccorrection to the equation of state by
Lo (—1)k adding the contribution from the spatial correlation of hard
4 ‘ 27on
It is possible to solve Eq66) for « to calculate the normal- p=n(z)B 1+k21 Bin"+ —3—x(o)|. (78

ization factor. The result is

Note that the last term in this equation is the hard-sphere
+ X, (69)  contribution to the equation of state that arises from the spa-
tial correlation of particles and the trace of the virial tensor.
It is possible to resume the series in Eg5) into a form
where similar to the Carnahan-Starling forf@29] by applying the
Padeapproximant method as used in Rgf0] and obtain the
£=n(z)A (27mmkgT) %2, (700  formula for the equation of state

3/2

2mm

nin(z)A. (



4196 BYUNG CHAN EU AND HIKMAT FARHAT 55

p=n(z)ﬁl{1+ ‘

(0.177-0.07)
(1-3 &°

(79

:n(z)ﬁl[1+ ¢

= O05F

This equation of state will be useful for calculating the trans- e
port coefficients later in this work. 04y
0.3

VIl. COMPARISON WITH EXPERIMENT 02k

A. Distribution of unperturbed granular matter o1k

Having identified the parameters iy in terms of phe- TS e 5 5 Eme e 5w
nomenological quantities, we are now ready to examine the
distribution function in more detail and in comparison with
available experimental observations. Sintdends to zero FIG. 1. Reduced density distribution with respeckt@he open
according to the relationf59) as y vanishes, the limit of jcles are the data by Clement and Rajchenbid). Here the

vanishing shear rate corresponds to the absolute zero of termtic packing density is takgn,=0.91. Note thapy is dimension-
perature for molecular fluids. Thus, we may say that thgegs.

granular matter is absolutely cold with respect to the trans-

lational motion when it is not perturbed by an external forcephase has a narrow distribution, as seems to be the case with

such as shearing force or tapping. In this limit the distribu-the experiment by Clement and Rajchenb&té], then the

tion function becomes a step function: distribution of the particles can be given by the density dis-
1 if a=0 . tribution function defined by the dimensionless dengity):

fe= 0 if a<O. 2 7ol (27-rm)3’2 w . - ;
p(z)= — q s
AC B f—oc f—oc

The value ofu, determines the position where the distri-

Z(mmy}

bution function vanishes. This is the situation where granules o d 6(q)8(s) 8(t—to)

are statically piled up in the gravitational field. The distribu- Xf t exd 02+ 2+ (I—t) 2+ bz—ud+ 1’
tion function in Eq.(80), together with the density distribu- o 1 (t=to) el

tion already calculated in E¢52), indicates the behavior of (81

the granular matter under the gravitational field in the limit
of vanishing perturbation. Their behavior is physically rea-where q=vmg/2v,, s=ymp/2v,, andt=ymp/2v, with
sonable and in agreement with experimental observation arig= vVmg/27u (u=the collective velocity of granulgsThis
everyday experience with granular matter. In a recent worlgives rise to the density distribution
of Goldhirsh and Taf9], which was not in print before the _
original version of this work was submitted, a reduced — Po

velocity—in fact, radial speed—distribution function com- p(2)= expbz—ue)+1’ (82)
puted by a simulation method for a sheared granular fluid is

shown to deviate from the normal Gaussian form. The velocwhere

ity distribution functionf, obtained in the present work is 3 a2

consistent with their finding, since, and any reduced distri- —_To (277_”‘) 83)
bution function obtained from it is certainly not Gaussian. Po A, B

This aspect and other macroscopic properties of granular flu- L L
ids predicted by the present theory will be discussed in @y choosingd=0.5 mm %, p,=0.91, andu,=15, which im-
separate work in the future. plies mB=50 m 2s?, we show that the distribution in Eq.
(82) fits well the experimental data on tlzedependence of
density obtained by Clement and Rajchenbfdd] as shown
in Fig. 1. The experimental values fér and w are, respec-

If a granular assembly is vertically shaken or tapped at ajvely, A=2.5 mm andw=20 s . We have not made com-
finite amplitude and frequency as was done by Clement angarison with the simulation data of Gallas, Herrmann, and

Rajchenbactj16], the particles in the assembly collectively Sokolowski[17], since the simulation data agree with the
move more or less vertically, although their velocities are noexperiment.

uniform but have a distribution. Such a velocity distribution
is given byf.. There are cases where some velocity compo-
nents vanish owing to the setup of the experiment in hand.
For example, if thex andy components of the velocity are
virtually absent, as in some experiments, and furthermore, if The theory of transport processes in granular matter can
the z component of the velocity in the up phase or the downbe developed in a completely parallel manner analogous to

B. Density distribution at a nonvanishing perturbation

VIIl. THEORY OF TRANSPORT PROCESSES
IN GRANULAR MATTER
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the procedures developed for ordinary fluids in R2@]. We [AB],=[2nA3(1+coshr)] 4 AB]\Y
therefore will simply present the relevant results for granular
matter. We will confine our discussion to linear transport
processes in this paper. It is possible to show that the viscos- +IZ E (I +1)(1,+1)
ity » and thermal conductivitk are given by the formulas 1=t 1=t
X [n2A6(1+ e*a)|1+|2+4]71[AB]§-|21|2) ) (93)
2p°Bg
7= TR (84 The second term corresponds to the correction to the “clas-
sical” contribution for which the distribution functions are
(é Tp)2B taken to be Maxwellian. The classical collision bracket inte-
= o P) PO (85  grals [AB] {9 are available in the literaturfe5]. We will be
RS content with the lowest-order approximation for the collision

- . bracket integrals. Thus, we take
where g=(m/2kgT)¥¥n0? C,=5kg/2m, and R

(i=1,3) are collision bracket integrals defined by the for- [AB]1~[2nA3(1+coshy)] 3 AB]. (94)
mula
For the value ofa the result in Eq(69) must be used with
R =1[(h{)+h{)— h()* —h{)*) the last term neglected for consistency with the approxima-
A 2 ! 2 tion made for Eq(94). We use this result and E@§84) to
X (h{"+h —h{* —h(*)],,. (86)  calculate the viscosity of granular matter. For the viscosity,
A=B=m[CC]?=m(CC—3}C?§), (95

Here various symbols are defined as
with é denoting the unit second-rank tensor. Calculating the

hi¥’=m[CC—3C?4];, (87)  front factor involvinga in Eq. (94) with the aforementioned
approximation neglecting thé&dependent term in Eq69)
(13)=m[%C2C—CpTC]1, (88) and using the literature result for the collision bracket inte-

gral [AB] {9 for hard spherefl5], we obtain from Eq(84)

with the subscript 1 and 2 referring to particles and the the VISCOS'ty in the form

square brackets in Eg86) stands for the integral 5 mksT\ 22 A3n(0.177-0.07003n) |2
7~ 1652 ( T ) 1+ (1— 1 A%n)3
(4B~ BoA; e [ vy | av, [ dk(guy K)felvy) lve) 99
X[1—fo(vy) ][ 1—fo(Vvy) JAB. (89) for which we have used the equation of state, &§). If the

equation of state given in E78) is used for viscosity, then

These collision bracket integrals are explicitly evaluated to jtis given by the formula

an approximation and presented below. 5 (kaT) 12

We will calculate the collision bracket integral in the case 7= 1652
where « is moderate in value. By using the expansion m
. o o1 A3n(0.177—0.07m3n)+2wa3n (o) 2
—e Xx(o
_ — s —ay—1,a—t _14A3,\3 3
feWII=feWI=2 ol (e ) e | =g } (1-3A%N)
(90) 97)

wheret is the reduced kinetic energy=imC28 (i=1,2) It must be noted that in contrast to the Newtonian viscosity

and « is as defined before. Let us now define the integrals of molecular fluids the viscosity formulas presented here de-
pend on the shear rateon account of they dependence of

T; see Eqs(59) and (63). Since the quantity in the square

[AB](fZ)—Bgn ( ) f dVJ def dk(g,- k) bracket in Eq(96) is proportional to the compressibility fac-
tor that reaches unity agincreases according to the formula
X exp —t;—t,)AB, (91) (75—the equation of state before resumming by a Pade

approximant—y approximately increases witly like \/§
That is, the granular fluid is seen to be dilatant and this is a
[AB](' — Bgn ( ) f dVlf def dk(gyo- K) qualitatively correct behavior as is well knowh| of granu-
12 lar matter.
The viscosity formuld96) is plotted in Fig. 2. It shows a
rather flat viscosity that slowly reaches a minimum at
(92 £&=A%n~5.7 before it rapidly increases. This behavior is
reminiscent of the experimental data by Hanes and Inman
Then [AB], can be split into two terms as follows: [31]. This minimum appears because the third virial coeffi-

Xexp—t;—t,)(1—e 1)i(1—e2)2AB.
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the statistical mechanics of ordinary molecular fluids the dis-
tribution function obeying the kinetic equation postulated is
the thermodynamic branch of solution, which yields a ther-
modynamic theory of processes in fluidized granular matter,
and this assertion enables us to construct a thermodynamic
theory from the statistical theory. Note that this procedure is
just the opposite of the one used in the conventional en-
semble theory of statistical mechanics, where the thermody-
namic branch of the distribution function is constructed in
correspondence with the phenomenological thermodynamics
established from the thermodynamic laws by means of the
Clausius inequality. This thermodynamic formalism for flu-
idized granular fluid, with the help of the attendant statistical
theory, elucidates the meaning of granular temperature when
the system is subject to an external perturbation such as
g ' ‘ shearing. This theory also provides the equation of state in
terms of the granular temperature so determined. The pres-
FIG. 2. Viscosity vs reduced densit=nA° (a scaled packing syre increases with the density, which is a qualitatively cor-
fraction). The inset is the blowup of the minimum region. The rect behavior.
Chapman-(z.‘,owlmg fOI’{'n/zU|a for hard spheres is used figr The density distribution function obtained from the ki-
No=(5/160%) (MkgT/ )™= netic equation is in agreement with experiment and the com-
puter simulation result on a vibrated granular matter and the
viscosity computed in the theory also exhibits qualitatively
correct behavior when compared with the viscosity of granu-
lar matter in that it remains almost constant over a density
interval and then steeply increases with the density. The
present theory also predicts that granular matter is dilatant as
experimentally known. Such behaviors would not have
IX. CONCLUDING REMARKS arisen if the equilibrium distribution function was simply
given by the Boltzmann distribution function that arises as
-~ oo the equilibrium solution of the kinetic equations appearing in
idized granular matter by taking into account the excluded Refs.[10—14. Therefore, they may be taken as evidence in

volume effects and significant momentum correlations + of the Kineti i dinth ¢ K and
present in congested elastic granular fluids. These two kinda-/PPOrt o the Kinetic equation used in the present work and,

of effects combine to give rise to an equilibrium distribution In particular, the collisiqn integral'therein. Nevertheless, the
function which has a mathematical form similar to the equi—theory presented here is only a first step toward the goal of

librium distribution function of a Fermi gas, which also has understanding kinetic processes in fluidized granular matter

the excluded-volume effects and momentum correlations‘”?lnd we hope that the present work stimulates further studies

We believe thathe momentum correlations in a congestedIn Kinetic theory of granular matter.
assembly of particles with an excluded volume is the key
feature that controls the kinetic evolution of statistical distri-
bution in a fluidized granular systenfnother significant This work has been supported in part by the Natural Sci-
point in the present theory is the assertion that in analogy tences and Engineering Research Council of Canada.
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cient B, is negative owing to the momentum correlations.
We note that if Eq(78) is used instead of Eq75) for the
equation of state, the minimum will be practically washed
out, since the term containing o) does not exhibit a mini-
mum and is dominant.

In this paper, we have formulated a kinetic theory of flu-
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